Uji Potensi Senyawa Bioaktif Ekstrak Antosianin Jagung Ungu sebagai Inhibitor Cyclin-Dependent Protein Kinase 6 (CDK6)

Authors

  • Ayu Tri Agustin Universitas Dr. Soebandi
  • Anas Fadli Wijaya Universitas Dr. Soebandi

DOI:

https://doi.org/10.57214/jka.v7i2.758

Keywords:

Anthocyanidin, Adolescents, Breast Cancer, CDK6, Palbociclib

Abstract

Cancer is characterized by uncontrolled cell proliferation. The upregulation and activation of the Cyclin-Dependent Protein Kinase 6 (CDK6) signaling pathway can induce unregulated breast cancer cell proliferation. Therefore, CDK6 inhibition continues to be developed as a potential target for drug design and development to treat breast cancer. This study aims to predict the biofunction of anthocyanin compounds from purple corn extract as inhibitors of Cyclin-Dependent Protein Kinase 6 (CDK6) using an in silico approach. The research methods included data mining, ligand and receptor preparation, molecular docking, docking visualization, and data analysis. Our results indicate that six compounds from purple corn extract (cyanidin, cyanidin 3-glucoside, pelargonidin-3-glucoside, pelargonidin, peonidin, and peonidin-3-glucoside) can bind to CDK6 at the C-terminal and N-terminal domains. The binding pattern suggests that cyanidin, cyanidin 3-glucoside, pelargonidin-3-glucoside, pelargonidin, peonidin, and peonidin-3-glucoside interact with CDK6 residues in the same manner as Palbociclib (control). This finding indicates that compounds from purple corn have the potential to act as competitive CDK6 inhibitors. Peonidin-3-glucoside exhibited the lowest binding energy of -282.5 kcal/mol, approaching that of Palbociclib (-329.4 kcal/mol).

References

Agustin, A. T., Julianto, E., Julianus, J., & Riranto, J. (2022). Potential role of betel leaf (Piper betle L.) water extract as antibacterial Escherichia coli through inhibition of β-ketoacyl-[acyl carrier protein] synthase I. Tropical Journal of Natural Product Research, 6(11), 1802–1808. https://doi.org/[DOI]

Agustin, A. T., Safitri, A., & Fatchiyah, F. (2020). An in silico approach reveals the potential function of cyanidin-3-o-glucoside of red rice in inhibiting the advanced glycation end products (AGES)-receptor (RAGE) signaling pathway. Acta Informatica Medica, 28(3), 170–179. https://doi.org/[DOI]

Baig, M. H., Yousuf, M., Khan, M. I., Khan, I., Ahmad, I., Alshahrani, M. Y., Hassan, M. I., & Dong, J.-J. (2022). Investigating the mechanism of inhibition of cyclin-dependent kinase 6 inhibitory potential by selonsertib: Newer insights into drug repurposing. Frontiers in Oncology, 12. https://doi.org/[DOI]

Corona, S. P., & Generali, D. (2018). Abemaciclib: A CDK4/6 inhibitor for the treatment of HR+/HER2− advanced breast cancer. Drug Design, Development and Therapy, 12, 321–330. https://doi.org/[DOI]

Dickens, E., & Ahmed, S. (2018). Principles of cancer treatment by chemotherapy. Surgery (Oxford), 36(3), 134–138. https://doi.org/[DOI]

Du, Q., Guo, X., Wang, M., Li, Y., Sun, X., & Li, Q. (2020). The application and prospect of CDK4/6 inhibitors in malignant solid tumors. Journal of Hematology & Oncology, 13(1), 41. https://doi.org/[DOI]

Fakhri, S., Khodamorady, M., Naseri, M., Farzaei, M. H., & Khan, H. (2020). The ameliorating effects of anthocyanins on the cross-linked signaling pathways of cancer dysregulated metabolism. Pharmacological Research, 159, 104895. https://doi.org/[DOI]

Folorunso, S. A., Abiodun, O. O., Abdus-salam, A. A., & Wuraola, F. O. (2023). Evaluation of side effects and compliance to chemotherapy in breast cancer patients at a Nigerian tertiary hospital. Ecancermedicalscience, 17. https://doi.org/[DOI]

Heins, M. J., de Ligt, K. M., Verloop, J., Siesling, S., Korevaar, J. C., Berendsen, A., Brandenbarg, D., Dassen, A., Jager, A., Hugtenburg, J., & van der Weele, G. (2022). Adverse health effects after breast cancer up to 14 years after diagnosis. The Breast, 61, 22–28. https://doi.org/[DOI]

Khairani, S., Keban, S. A., & Afrianty, M. (2019). Evaluation of drug side effects chemotherapy on quality of life (QOL) breast cancer patients at Hospital X in Jakarta. Jurnal Ilmu Kefarmasian Indonesia, 17(1), 9. https://doi.org/[DOI]

Long, N., Suzuki, S., Sato, S., Naiki‐Ito, A., Sakatani, K., Shirai, T., & Takahashi, S. (2013). Purple corn color inhibition of prostate carcinogenesis by targeting cell growth pathways. Cancer Science, 104(3), 298–303. https://doi.org/[DOI]

Łukasiewicz, S., Czeczelewski, M., Forma, A., Baj, J., Sitarz, R., & Stanisławek, A. (2021). Breast cancer—Epidemiology, risk factors, classification, prognostic markers, and current treatment strategies—An updated review. Cancers, 13(17), 4287. https://doi.org/[DOI]

Mazewski, C., Liang, K., & Gonzalez de Mejia, E. (2017). Inhibitory potential of anthocyanin-rich purple and red corn extracts on human colorectal cancer cell proliferation in vitro. Journal of Functional Foods, 34, 254–265. https://doi.org/[DOI]

Moo, T.-A., Sanford, R., Dang, C., & Morrow, M. (2018). Overview of breast cancer therapy. PET Clinics, 13(3), 339–354. https://doi.org/[DOI]

Pavlovic, D., Niciforovic, D., Papic, D., Milojevic, K., & Markovic, M. (2023). CDK4/6 inhibitors: Basics, pros, and major cons in breast cancer treatment with specific regard to cardiotoxicity – A narrative review. Therapeutic Advances in Medical Oncology, 15. https://doi.org/[DOI]

Rabelo, A. C. S., Guerreiro, C. de A., Shinzato, V. I., Ong, T. P., & Noratto, G. (2023). Anthocyanins reduce cell invasion and migration through Akt/mTOR downregulation and apoptosis activation in triple-negative breast cancer cells: A systematic review and meta-analysis. Cancers, 15(8), 2300. https://doi.org/[DOI]

Ramos-Escudero, F., Muñoz, A. M., Alvarado-Ortíz, C., Alvarado, Á., & Yáñez, J. A. (2012). Purple corn (Zea mays L.) phenolic compounds profile and its assessment as an agent against oxidative stress in isolated mouse organs. Journal of Medicinal Food, 15(2), 206–215. https://doi.org/[DOI]

Serra, F., Lapidari, P., Quaquarini, E., Tagliaferri, B., Sottotetti, F., & Palumbo, R. (2019). Palbociclib in metastatic breast cancer: Current evidence and real-life data. Drugs in Context, 8, 1–16. https://doi.org/[DOI]

Shrihastini, V., Muthuramalingam, P., Adarshan, S., Sujitha, M., Chen, J.-T., Shin, H., & Ramesh, M. (2021). Plant derived bioactive compounds, their anti-cancer effects and in silico approaches as an alternative target treatment strategy for breast cancer: An updated overview. Cancers, 13(24), 6222. https://doi.org/10.xxxx/cancersxxxxx

Sivaraman, D., & Pradeep, P. S. (2020). Exploration of bioflavonoids targeting dengue virus NS5 RNA-dependent RNA polymerase: In silico molecular docking approach. Journal of Applied Pharmaceutical Science. https://doi.org/10.xxxx/japsxxxxx

Suarni, Sulistyaningrum, A., & Aqil, M. (2021). The utilization of young-harvested purple corn for dodol processed to support functional food diversification. IOP Conference Series: Earth and Environmental Science, 911(1), 012071. https://doi.org/10.xxxx/iopxxxxx

Syamsul Hidayat, M. K., Kusworini, Rudijanto, A., & Sumitro, S. B. (2019). Potential of biological activities from chemical compounds of Nigella sativa as anti-osteoporosis, an in-silico study. Journal of Global Pharma Technology, 11(4), 185–191.

Tadesse, S., Yu, M., Kumarasiri, M., Le, B. T., & Wang, S. (2015). Targeting CDK6 in cancer: State of the art and new insights. Cell Cycle, 14(20), 3220–3230. https://doi.org/10.xxxx/cellcyclexxxxx

Tian, X., Xin, H., Paengkoum, P., Paengkoum, S., Ban, C., & Sorasak, T. (2019). Effects of anthocyanin-rich purple corn (Zea mays L.) stover silage on nutrient utilization, rumen fermentation, plasma antioxidant capacity, and mammary gland gene expression in dairy goats. Journal of Animal Science, 97(3), 1384–1397. https://doi.org/10.xxxx/jasxxxxx

Tribudi, Y. A., Agustin, A. T., Setyaningtyas, D. E., & Gusmalawati, D. (2022). Bioactive compound profile and biological modeling reveals the potential role of purified methanolic extract of sweet flag (Acorus calamus L.) in inhibiting the dengue virus (DENV) NS3 protease-helicase. Indonesian Journal of Chemistry, 22(2), 331–341. https://doi.org/10.xxxx/ijcxxxxx

Valenza, A., Bonfanti, C., Pasini, M. E., & Bellosta, P. (2018). Anthocyanins function as anti-inflammatory agents in a Drosophila model for adipose tissue macrophage infiltration. BioMed Research International, 2018, 1–9. https://doi.org/10.xxxx/bmrixxxxx

Vayupharp, B., & Laksanalamai, V. (2015). Antioxidant properties and color stability of anthocyanin purified extracts from Thai waxy purple corn cob. Journal of Food and Nutrition Research, 3(10), 629–636.

Vilcacundo, E., Montalvo, V., Sanaguano, H., Moran, R., Carrillo, W., & García, A. (2022). Identification of phytochemical compounds, functional properties and antioxidant activity of germinated purple corn protein concentrate and its gastrointestinal hydrolysates. Agronomy, 12(9), 2217. https://doi.org/10.xxxx/agronomyxxxxx

Yousuf, M., Shamsi, A., Anjum, F., Shafie, A., Islam, A., Haque, Q. M. R., Elasbali, A. M., Yadav, D. K., & Hassan, M. I. (2022). Effect of pH on the structure and function of cyclin-dependent kinase 6. PLoS ONE, 17(2), 1–12. https://doi.org/10.xxxx/plosonexxxxx

Downloads

Published

2023-10-30

How to Cite

Ayu Tri Agustin, & Anas Fadli Wijaya. (2023). Uji Potensi Senyawa Bioaktif Ekstrak Antosianin Jagung Ungu sebagai Inhibitor Cyclin-Dependent Protein Kinase 6 (CDK6) . Jurnal Kesehatan Amanah, 7(2), 66–77. https://doi.org/10.57214/jka.v7i2.758