Peran Biomarker Darah terhadap Distribusi Lemak Tubuh pada Perempuan Dewasa : Analisis Korelasi Hematologis dan Metabolik

Authors

  • Christian Wijaya Universitas Tarumanagara
  • Alexander Halim Santoso Universitas Tarumanagara
  • Bryan Anna Wijaya Universitas Tarumanagara

DOI:

https://doi.org/10.57214/jka.v9i1.928

Keywords:

Adult women, Age, Fasting glucose, HDL, Hemoglobin, Subcutaneous fat, Uric acid

Abstract

Introduction: Subcutaneous fat distribution in adult women changes significantly with age, particularly during menopausal transition. This modulation is closely linked to hormonal alterations and may be reflected through blood biomarkers. Methods: A cross-sectional study was conducted to analyze the relationship between age and blood biomarkers (hemoglobin, fasting glucose, HDL, and uric acid) with subcutaneous fat thickness at three body sites (biceps, triceps, and suprailiac) in adult women. Pearson correlation tests were used to assess associations between variables. Results: A significant positive correlation was found between age and biceps fat thickness (r = 0.112; p = 0.044). Hemoglobin showed a consistent positive correlation with fat thickness across all sites. Fasting glucose correlated positively with triceps fat (r = 0.109; p = 0.050), and uric acid was positively associated with triceps and suprailiac fat. HDL exhibited a significant negative correlation with suprailiac fat (r = -0.180; p = 0.001). Conclusion: Blood biomarkers hold potential as non-invasive indicators for tracking age-related subcutaneous fat redistribution. This approach could enhance early detection of metabolic risk in adult women and support preventive and integrative clinical strategies.

References

Acharya, S., Patnaik, M., Mishra, S., & Panigrahi, A. (2018). Correlation of hemoglobin versus body mass index and body fat in young adult female medical students. National Journal of Physiology, Pharmacy and Pharmacology, 8(9), 1371. https://doi.org/10.5455/njppp.2018.8.0619912062018

https://doi.org/10.5455/njppp.2018.8.0619912062018

Alkhatib, B., Orabi, A., Agraib, L. M., & Al-Shami, I. (2024). Metabolic syndrome prediction based on body composition indices. Journal of the Egyptian Public Health Association, 99(1), 34. https://doi.org/10.1186/s42506-024-00181-9

https://doi.org/10.1186/s42506-024-00181-9

Amiri, M., Mousavi, M., Azizi, F., & Ramezani Tehrani, F. (2023). The relationship of reproductive factors with adiposity and body shape indices changes overtime: findings from a community-based study. Journal of Translational Medicine, 21(1), 137. https://doi.org/10.1186/s12967-023-04000-1

https://doi.org/10.1186/s12967-023-04000-1

Andreacchi, A. T., Griffith, L. E., Guindon, G. E., Mayhew, A., Bassim, C., Pigeyre, M., Stranges, S., & Anderson, L. N. (2021). Body mass index, waist circumference, waist-to-hip ratio, and body fat in relation to health care use in the Canadian Longitudinal Study on Aging. International Journal of Obesity, 45(3), 666-676. https://doi.org/10.1038/s41366-020-00731-z

https://doi.org/10.1038/s41366-020-00731-z

Astuti, S. C. D., & Apryanti, Y. P. (2023). Abdominal Circumference as A Predictor of Type II Diabetes Mellitus in Young Women. Jurnal Info Kesehatan. https://doi.org/10.31965/infokes.vol21.iss1.878

https://doi.org/10.31965/infokes.Vol21.Iss1.878

Awoke, M. A., Wycherley, T. P., Earnest, A., Skouteris, H., & Moran, L. J. (2022). The Profiling of Diet and Physical Activity in Reproductive Age Women and Their Association with Body Mass Index. Nutrients, 14(13). https://doi.org/10.3390/nu14132607

https://doi.org/10.3390/nu14132607

Briand, M., Raffin, J., Gonzalez-Bautista, E., Ritz, P., Abellan Van Kan, G., Pillard, F., Faruch-Bilfeld, M., Guyonnet, S., Dray, C., Vellas, B., de Souto Barreto, P., & Rolland, Y. (2024). Body composition and aging: cross-sectional results from the INSPIRE study in people 20 to 93 years old. GeroScience, 47(1), 863-875. https://doi.org/10.1007/s11357-024-01245-6

https://doi.org/10.1007/s11357-024-01245-6

de Cuevillas, B., Alvarez-Alvarez, I., Riezu-Boj, J. I., Navas-Carretero, S., & Martinez, J. A. (2021). The hypertriglyceridemic-waist phenotype as a valuable and integrative mirror of metabolic syndrome traits. Scientific Reports, 11(1), 21859. https://doi.org/10.1038/s41598-021-01343-x

https://doi.org/10.1038/s41598-021-01343-x

Huang, B., DePaolo, J., Judy, R. L., Shakt, G., Witschey, W. R., Levin, M. G., & Gershuni, V. M. (2023). Relationships between body fat distribution and metabolic syndrome traits and outcomes: A mendelian randomization study. PLOS ONE, 18(10), e0293017. https://doi.org/10.1371/journal.pone.0293017

https://doi.org/10.1371/journal.pone.0293017

Jabczyk, M., Nowak, J., Jagielski, P., Hudzik, B., Borszcz, J., & Zubelewicz-Szkodzińska, B. (2024). Interplay between lipid profile and anthropometric measures as indicators of cardiometabolic risk in women with polycystic ovary syndrome. Frontiers in Endocrinology, 15. https://doi.org/10.3389/fendo.2024.1398017

https://doi.org/10.3389/fendo.2024.1398017

Jo, S., Ham, W., & Park, S. (2024). Correlation between anthropometric indices, blood fat composition and glycated hemoglobin levels in Korean nondiabetic adults. Society for Standards Certification and Safety, 14(3), 109-121. https://doi.org/10.34139/JSCS.2024.14.3.109

https://doi.org/10.34139/JSCS.2024.14.3.109

Kaur, K., Kaur, D. H., Bains, D. K., & Brar, D. J. K. (2020). A study of anthropometric profile of diabetic and non-diabetic women. International Journal of Chemical Studies, 8(5), 2174-2178. https://doi.org/10.22271/chemi.2020.v8.i5ad.10626

https://doi.org/10.22271/chemi.2020.v8.i5ad.10626

Kiranmayee, D., Kavya, K., Himabindu, Y., Sriharibabu, M., Madhuri, G. J., & Venu, S. (2017). Correlations between anthropometry and lipid profile in women with PCOS. Journal of Human Reproductive Sciences, 10(3), 167. https://doi.org/10.4103/jhrs.JHRS_108_16

https://doi.org/10.4103/jhrs.JHRS_108_16

Kobayashi, G., Shinozaki, T., Okada, H., Nakajima, H., Hashimoto, Y., Hamaguchi, M., Kurogi, K., Murata, H., Yoshida, N., Ito, M., Ohkuma, T., Horiguchi, G., Teramukai, S., & Fukui, M. (2024). Associations between anthropometric indices as complementary predictors and incidence of type 2 diabetes; Panasonic Cohort Study 21. Diabetes Research and Clinical Practice, 217, 111888. https://doi.org/10.1016/j.diabres.2024.111888

https://doi.org/10.1016/j.diabres.2024.111888

Lampignano, L., Zupo, R., Donghia, R., Guerra, V., Castellana, F., Murro, I., Di Noia, C., Sardone, R., Giannelli, G., & De Pergola, G. (2020). Cross-sectional relationship among different anthropometric parameters and cardio-metabolic risk factors in a cohort of patients with overweight or obesity. PLOS ONE, 15(11), e0241841. https://doi.org/10.3389/journal.pone.0241841

https://doi.org/10.3389/journal.pone.0241841

Li, J. Q., Wang, X., Peng, L., Yan, W., Liu, Q. Q., & Li, X. (2022). The correlations of abdominal adipose tissue with anthropometric and metabolic parameters in obese children by magnetic resonance imaging. 60(8), 798-803. https://doi.org/10.3760/cma.j.cn112140-20220129-00099

Li, Y., Gui, J., Liu, H., Guo, L., Li, J., Lei, Y., Li, X., Sun, L., Yang, L., Yuan, T., Wang, C., Zhang, D., Wei, H., Li, J., Liu, M., Hua, Y., & Zhang, L. (2023). Predicting metabolic syndrome by obesity- and lipid-related indices in mid-aged and elderly Chinese: a population-based cross-sectional study. Frontiers in Endocrinology, 14. https://doi.org/10.3389/fendo.2023.1201132

https://doi.org/10.3389/fendo.2023.1201132

Liu, C.-A., Liu, T., Ruan, G., Ge, Y.-Z., Song, M.-M., Xie, H.-L., Lin, S.-Q., Deng, L., Zhang, H.-Y., Zhang, Q., & Shi, H. (2023). The relationship between fat distribution in central region and comorbidities in obese people: Based on NHANES 2011-2018. Frontiers in Endocrinology, 14. https://doi.org/10.3389/fendo.2023.1114963

https://doi.org/10.3389/fendo.2023.1114963

Liu, J., Zhang, Y., Lavie, C. J., & Moran, A. E. (2022). Trends in Metabolic Phenotypes According to Body Mass Index Among US Adults, 1999-2018. Mayo Clinic Proceedings, 97(9), 1664-1679. https://doi.org/10.1016/j.mayocp.2022.02.013

https://doi.org/10.1016/j.mayocp.2022.02.013

Miller, E., Janssen, I., & Ross, R. (2023). Changes In Body Composition In Relation To The Metabolic Syndrome: A Compositional Data Analysis. Medicine & Science in Sports & Exercise, 55(9S), 640-640. https://doi.org/10.1249/01.mss.0000985776.55853.b9

https://doi.org/10.1249/01.mss.0000985776.55853.b9

Mukhopadhyay, P., Ghosh, S., Pandit, K., Chatterjee, P., Majhi, B., & Chowdhury, S. (2019). Uric acid and its correlation with various metabolic parameters: A population-based study. Indian Journal of Endocrinology and Metabolism, 23(1), 134. https://doi.org/10.4103/ijem.IJEM_18_19

https://doi.org/10.4103/ijem.IJEM_18_19

Nazar, A. D., Lipoeto, N. I., Fahmida, U., & Rita, R. S. (2024). Relationship of Body Fat Distribution and Anthropometric Status with Lipid Profiles in Ethnic Minang Adult Women. The Open Public Health Journal, 17(1). https://doi.org/10.2174/0118749445353029241030111530

https://doi.org/10.2174/0118749445353029241030111530

Park, J.-S., Byun, Y.-H., & Kim, S. (2025). Predictive Diagnostic Power of Anthropometric Indicators for Metabolic Syndrome: A Comparative Study in Korean Adults. Journal of Clinical Medicine, 14(2), 448. https://doi.org/10.3390/jcm14020448

https://doi.org/10.3390/jcm14020448

Pinheiro, T. D. D. P., da Silva, B., Mayer, M. S., Salazar, R. F. dos S., Parisi, M. M., & Azzolin, G. B. (2024). Plasma atherogenic index and triglyceride-glucose index for identifying the cardiovascular risk in women with normal biochemical and anthropometric parameters. Revista Contexto & Saúde, 24(48), e13579. https://doi.org/10.21527/2176-7114.2024.48.13579

https://doi.org/10.21527/2176-7114.2024.48.13579

Ponti, F., Santoro, A., Mercatelli, D., Gasperini, C., Conte, M., Martucci, M., Sangiorgi, L., Franceschi, C., & Bazzocchi, A. (2020). Aging and Imaging Assessment of Body Composition: From Fat to Facts. Frontiers in Endocrinology, 10. https://doi.org/10.3389/fendo.2019.00861

https://doi.org/10.3389/fendo.2019.00861

Quartey, P., Owusu, B. A., Marfo, L., & Appiah, E. (2020). Relationship between uric acid, blood pressure and anthropometric indices in a healthy Ghanaian adult population. International Journal of Research in Medical Sciences, 8(12), 4185. https://doi.org/10.18203/2320-6012.ijrms20205286

https://doi.org/10.18203/2320-6012.ijrms20205286

R, R., & Nambiar, S. (2017). Correlation of anthropometric indices with lipid profile in adult females. National Journal of Physiology, Pharmacy and Pharmacology, 1. https://doi.org/10.5455/njppp.2018.8.1042004112017

https://doi.org/10.5455/njppp.2018.8.1042004112017

Ramazan Karadogan, S., Canbolat, E., & Pınar Cakıroglu, F. (2022). The effect of obesity on metabolic parameters: a cross sectional study in adult women. African Health Sciences, 22(4), 241-251. https://doi.org/10.4314/ahs.v22i4.29

https://doi.org/10.4314/ahs.v22i4.29

Rizki, M. U., Probosari, E., & Nissa, C. (2017). HUBUNGAN LINGKAR PINGGANG, RASIO LINGKAR PINGGANG TERHADAP TINGGI BADAN DAN INDEKS MASSA TUBUH DENGAN KADAR ASAM URAT PEREMPUAN USIA 45-55 TAHUN. Journal of Nutrition College, 6(4), 357. https://doi.org/10.14710/jnc.v6i4.18788

https://doi.org/10.14710/jnc.v6i4.18788

Rosales-Ricardo, Y., Caiza-Ruiz, V., & Álvarez-Carrión, S. (2024). Anthropometric indicators and their relationship with body fat in obese women. Bionatura Journal, 9(1), 1-11. https://doi.org/10.21931/RB/2024.09.01.3

https://doi.org/10.21931/RB/2024.09.01.3

Rustika, R., Driyah, S., Oemiati, R., & Hartati, N. S. (2019). Prediktor Sindrom Metabolik: Studi Kohor Prospektif Selama Enam Tahun di Bogor, Indonesia. Media Penelitian Dan Pengembangan Kesehatan, 29(3), 215-224. https://doi.org/10.22435/mpk.v29i3.654

https://doi.org/10.22435/mpk.v29i3.654

Shi, J., Chen, Z., & Zhang, Y. (2024). Associations between body fat anthropometric indices and mortality among individuals with metabolic syndrome. Lipids in Health and Disease, 23(1), 306. https://doi.org/10.1186/s12944-024-02272-0

https://doi.org/10.1186/s12944-024-02272-0

Sinha, N. K., & Haldar, J. P. (2015). Correlation between Haemoglobin Level and Anthropometric Variables: A Study on Women of Reproductive Age Group, West Bengal. The Anthropologist, 19(1), 185-192. https://doi.org/10.1080/09720073.2015.11891653

https://doi.org/10.1080/09720073.2015.11891653

Stevens, V. L., Carter, B. D., McCullough, M. L., Campbell, P. T., & Wang, Y. (2020). Metabolomic Profiles Associated with BMI, Waist Circumference, and Diabetes and Inflammation Biomarkers in Women. Obesity, 28(1), 187-196. https://doi.org/10.1002/oby.22670

https://doi.org/10.1002/oby.22670

Tabary, M., Cheraghian, B., Mohammadi, Z., Rahimi, Z., Naderian, M. R., Danehchin, L., Paridar, Y., Abolnejadian, F., Noori, M., Mard, S. A., Masoudi, S., Araghi, F., Shayesteh, A. A., & Poustchi, H. (2021). Association of anthropometric indices with cardiovascular disease risk factors among adults: a study in Iran. European Journal of Cardiovascular Nursing, 20(4), 358-366. https://doi.org/10.1093/eurjcn/zvaa007

https://doi.org/10.1093/eurjcn/zvaa007

Tapio, J., Vähänikkilä, H., Kesäniemi, Y. A., Ukkola, O., & Koivunen, P. (2021). Higher hemoglobin levels are an independent risk factor for adverse metabolism and higher mortality in a 20-year follow-up. Scientific Reports, 11(1), 19936. https://doi.org/10.1038/s41598-021-99217-9

https://doi.org/10.1038/s41598-021-99217-9

Timoteo, V. J., Chiang, K.-M., & Pan, W.-H. (2022). Positive or U-Shaped Association of Elevated Hemoglobin Concentration Levels with Metabolic Syndrome and Metabolic Components: Findings from Taiwan Biobank and UK Biobank. Nutrients, 14(19), 4007. https://doi.org/10.3390/nu14194007

https://doi.org/10.3390/nu14194007

Toselli, S., Grigoletto, A., Zaccagni, L., Rinaldo, N., Badicu, G., Grosz, W. R., & Campa, F. (2021). Body image perception and body composition in early adolescents: a longitudinal study of an Italian cohort. BMC Public Health, 21(1), 1381. https://doi.org/10.1186/s12889-021-11458-5

https://doi.org/10.1186/s12889-021-11458-5

Verma, S., Verma, N., & Tiwari, S. (2021). Association and Sensitivity of Serum Uric Acid Levels with Certain Anthropometric Parameters in Overweight and Obese Subjects. International Journal of Health Sciences and Research, 11(3), 198-204. https://www.ijhsr.org/IJHSR_Vol.11_Issue.3_March2021/IJHSR031.pdf

Zhao, Y., Gong, J., Ji, Y., Zhao, X., He, L., Cai, S., & Yan, X. (2023). Cross-sectional study of characteristics of body composition of 24,845 children and adolescents aged 3-17 years in Suzhou. BMC Pediatrics, 23(1), 358. https://doi.org/10.1186/s12887-023-04134-7

https://doi.org/10.1186/s12887-023-04134-7

Downloads

Published

2025-05-31

How to Cite

Christian Wijaya, Alexander Halim Santoso, & Bryan Anna Wijaya. (2025). Peran Biomarker Darah terhadap Distribusi Lemak Tubuh pada Perempuan Dewasa : Analisis Korelasi Hematologis dan Metabolik. Jurnal Kesehatan Amanah, 9(1), 438–453. https://doi.org/10.57214/jka.v9i1.928