Peran Biomarker Darah terhadap Distribusi Lemak Tubuh pada Perempuan Dewasa : Analisis Korelasi Hematologis dan Metabolik
DOI:
https://doi.org/10.57214/jka.v9i1.928Keywords:
Adult women, Age, Fasting glucose, HDL, Hemoglobin, Subcutaneous fat, Uric acidAbstract
Introduction: Subcutaneous fat distribution in adult women changes significantly with age, particularly during menopausal transition. This modulation is closely linked to hormonal alterations and may be reflected through blood biomarkers. Methods: A cross-sectional study was conducted to analyze the relationship between age and blood biomarkers (hemoglobin, fasting glucose, HDL, and uric acid) with subcutaneous fat thickness at three body sites (biceps, triceps, and suprailiac) in adult women. Pearson correlation tests were used to assess associations between variables. Results: A significant positive correlation was found between age and biceps fat thickness (r = 0.112; p = 0.044). Hemoglobin showed a consistent positive correlation with fat thickness across all sites. Fasting glucose correlated positively with triceps fat (r = 0.109; p = 0.050), and uric acid was positively associated with triceps and suprailiac fat. HDL exhibited a significant negative correlation with suprailiac fat (r = -0.180; p = 0.001). Conclusion: Blood biomarkers hold potential as non-invasive indicators for tracking age-related subcutaneous fat redistribution. This approach could enhance early detection of metabolic risk in adult women and support preventive and integrative clinical strategies.
References
Acharya, S., Patnaik, M., Mishra, S., & Panigrahi, A. (2018). Correlation of hemoglobin versus body mass index and body fat in young adult female medical students. National Journal of Physiology, Pharmacy and Pharmacology, 8(9), 1371. https://doi.org/10.5455/njppp.2018.8.0619912062018
https://doi.org/10.5455/njppp.2018.8.0619912062018
Alkhatib, B., Orabi, A., Agraib, L. M., & Al-Shami, I. (2024). Metabolic syndrome prediction based on body composition indices. Journal of the Egyptian Public Health Association, 99(1), 34. https://doi.org/10.1186/s42506-024-00181-9
https://doi.org/10.1186/s42506-024-00181-9
Amiri, M., Mousavi, M., Azizi, F., & Ramezani Tehrani, F. (2023). The relationship of reproductive factors with adiposity and body shape indices changes overtime: findings from a community-based study. Journal of Translational Medicine, 21(1), 137. https://doi.org/10.1186/s12967-023-04000-1
https://doi.org/10.1186/s12967-023-04000-1
Andreacchi, A. T., Griffith, L. E., Guindon, G. E., Mayhew, A., Bassim, C., Pigeyre, M., Stranges, S., & Anderson, L. N. (2021). Body mass index, waist circumference, waist-to-hip ratio, and body fat in relation to health care use in the Canadian Longitudinal Study on Aging. International Journal of Obesity, 45(3), 666-676. https://doi.org/10.1038/s41366-020-00731-z
https://doi.org/10.1038/s41366-020-00731-z
Astuti, S. C. D., & Apryanti, Y. P. (2023). Abdominal Circumference as A Predictor of Type II Diabetes Mellitus in Young Women. Jurnal Info Kesehatan. https://doi.org/10.31965/infokes.vol21.iss1.878
https://doi.org/10.31965/infokes.Vol21.Iss1.878
Awoke, M. A., Wycherley, T. P., Earnest, A., Skouteris, H., & Moran, L. J. (2022). The Profiling of Diet and Physical Activity in Reproductive Age Women and Their Association with Body Mass Index. Nutrients, 14(13). https://doi.org/10.3390/nu14132607
https://doi.org/10.3390/nu14132607
Briand, M., Raffin, J., Gonzalez-Bautista, E., Ritz, P., Abellan Van Kan, G., Pillard, F., Faruch-Bilfeld, M., Guyonnet, S., Dray, C., Vellas, B., de Souto Barreto, P., & Rolland, Y. (2024). Body composition and aging: cross-sectional results from the INSPIRE study in people 20 to 93 years old. GeroScience, 47(1), 863-875. https://doi.org/10.1007/s11357-024-01245-6
https://doi.org/10.1007/s11357-024-01245-6
de Cuevillas, B., Alvarez-Alvarez, I., Riezu-Boj, J. I., Navas-Carretero, S., & Martinez, J. A. (2021). The hypertriglyceridemic-waist phenotype as a valuable and integrative mirror of metabolic syndrome traits. Scientific Reports, 11(1), 21859. https://doi.org/10.1038/s41598-021-01343-x
https://doi.org/10.1038/s41598-021-01343-x
Huang, B., DePaolo, J., Judy, R. L., Shakt, G., Witschey, W. R., Levin, M. G., & Gershuni, V. M. (2023). Relationships between body fat distribution and metabolic syndrome traits and outcomes: A mendelian randomization study. PLOS ONE, 18(10), e0293017. https://doi.org/10.1371/journal.pone.0293017
https://doi.org/10.1371/journal.pone.0293017
Jabczyk, M., Nowak, J., Jagielski, P., Hudzik, B., Borszcz, J., & Zubelewicz-Szkodzińska, B. (2024). Interplay between lipid profile and anthropometric measures as indicators of cardiometabolic risk in women with polycystic ovary syndrome. Frontiers in Endocrinology, 15. https://doi.org/10.3389/fendo.2024.1398017
https://doi.org/10.3389/fendo.2024.1398017
Jo, S., Ham, W., & Park, S. (2024). Correlation between anthropometric indices, blood fat composition and glycated hemoglobin levels in Korean nondiabetic adults. Society for Standards Certification and Safety, 14(3), 109-121. https://doi.org/10.34139/JSCS.2024.14.3.109
https://doi.org/10.34139/JSCS.2024.14.3.109
Kaur, K., Kaur, D. H., Bains, D. K., & Brar, D. J. K. (2020). A study of anthropometric profile of diabetic and non-diabetic women. International Journal of Chemical Studies, 8(5), 2174-2178. https://doi.org/10.22271/chemi.2020.v8.i5ad.10626
https://doi.org/10.22271/chemi.2020.v8.i5ad.10626
Kiranmayee, D., Kavya, K., Himabindu, Y., Sriharibabu, M., Madhuri, G. J., & Venu, S. (2017). Correlations between anthropometry and lipid profile in women with PCOS. Journal of Human Reproductive Sciences, 10(3), 167. https://doi.org/10.4103/jhrs.JHRS_108_16
https://doi.org/10.4103/jhrs.JHRS_108_16
Kobayashi, G., Shinozaki, T., Okada, H., Nakajima, H., Hashimoto, Y., Hamaguchi, M., Kurogi, K., Murata, H., Yoshida, N., Ito, M., Ohkuma, T., Horiguchi, G., Teramukai, S., & Fukui, M. (2024). Associations between anthropometric indices as complementary predictors and incidence of type 2 diabetes; Panasonic Cohort Study 21. Diabetes Research and Clinical Practice, 217, 111888. https://doi.org/10.1016/j.diabres.2024.111888
https://doi.org/10.1016/j.diabres.2024.111888
Lampignano, L., Zupo, R., Donghia, R., Guerra, V., Castellana, F., Murro, I., Di Noia, C., Sardone, R., Giannelli, G., & De Pergola, G. (2020). Cross-sectional relationship among different anthropometric parameters and cardio-metabolic risk factors in a cohort of patients with overweight or obesity. PLOS ONE, 15(11), e0241841. https://doi.org/10.3389/journal.pone.0241841
https://doi.org/10.3389/journal.pone.0241841
Li, J. Q., Wang, X., Peng, L., Yan, W., Liu, Q. Q., & Li, X. (2022). The correlations of abdominal adipose tissue with anthropometric and metabolic parameters in obese children by magnetic resonance imaging. 60(8), 798-803. https://doi.org/10.3760/cma.j.cn112140-20220129-00099
Li, Y., Gui, J., Liu, H., Guo, L., Li, J., Lei, Y., Li, X., Sun, L., Yang, L., Yuan, T., Wang, C., Zhang, D., Wei, H., Li, J., Liu, M., Hua, Y., & Zhang, L. (2023). Predicting metabolic syndrome by obesity- and lipid-related indices in mid-aged and elderly Chinese: a population-based cross-sectional study. Frontiers in Endocrinology, 14. https://doi.org/10.3389/fendo.2023.1201132
https://doi.org/10.3389/fendo.2023.1201132
Liu, C.-A., Liu, T., Ruan, G., Ge, Y.-Z., Song, M.-M., Xie, H.-L., Lin, S.-Q., Deng, L., Zhang, H.-Y., Zhang, Q., & Shi, H. (2023). The relationship between fat distribution in central region and comorbidities in obese people: Based on NHANES 2011-2018. Frontiers in Endocrinology, 14. https://doi.org/10.3389/fendo.2023.1114963
https://doi.org/10.3389/fendo.2023.1114963
Liu, J., Zhang, Y., Lavie, C. J., & Moran, A. E. (2022). Trends in Metabolic Phenotypes According to Body Mass Index Among US Adults, 1999-2018. Mayo Clinic Proceedings, 97(9), 1664-1679. https://doi.org/10.1016/j.mayocp.2022.02.013
https://doi.org/10.1016/j.mayocp.2022.02.013
Miller, E., Janssen, I., & Ross, R. (2023). Changes In Body Composition In Relation To The Metabolic Syndrome: A Compositional Data Analysis. Medicine & Science in Sports & Exercise, 55(9S), 640-640. https://doi.org/10.1249/01.mss.0000985776.55853.b9
https://doi.org/10.1249/01.mss.0000985776.55853.b9
Mukhopadhyay, P., Ghosh, S., Pandit, K., Chatterjee, P., Majhi, B., & Chowdhury, S. (2019). Uric acid and its correlation with various metabolic parameters: A population-based study. Indian Journal of Endocrinology and Metabolism, 23(1), 134. https://doi.org/10.4103/ijem.IJEM_18_19
https://doi.org/10.4103/ijem.IJEM_18_19
Nazar, A. D., Lipoeto, N. I., Fahmida, U., & Rita, R. S. (2024). Relationship of Body Fat Distribution and Anthropometric Status with Lipid Profiles in Ethnic Minang Adult Women. The Open Public Health Journal, 17(1). https://doi.org/10.2174/0118749445353029241030111530
https://doi.org/10.2174/0118749445353029241030111530
Park, J.-S., Byun, Y.-H., & Kim, S. (2025). Predictive Diagnostic Power of Anthropometric Indicators for Metabolic Syndrome: A Comparative Study in Korean Adults. Journal of Clinical Medicine, 14(2), 448. https://doi.org/10.3390/jcm14020448
https://doi.org/10.3390/jcm14020448
Pinheiro, T. D. D. P., da Silva, B., Mayer, M. S., Salazar, R. F. dos S., Parisi, M. M., & Azzolin, G. B. (2024). Plasma atherogenic index and triglyceride-glucose index for identifying the cardiovascular risk in women with normal biochemical and anthropometric parameters. Revista Contexto & Saúde, 24(48), e13579. https://doi.org/10.21527/2176-7114.2024.48.13579
https://doi.org/10.21527/2176-7114.2024.48.13579
Ponti, F., Santoro, A., Mercatelli, D., Gasperini, C., Conte, M., Martucci, M., Sangiorgi, L., Franceschi, C., & Bazzocchi, A. (2020). Aging and Imaging Assessment of Body Composition: From Fat to Facts. Frontiers in Endocrinology, 10. https://doi.org/10.3389/fendo.2019.00861
https://doi.org/10.3389/fendo.2019.00861
Quartey, P., Owusu, B. A., Marfo, L., & Appiah, E. (2020). Relationship between uric acid, blood pressure and anthropometric indices in a healthy Ghanaian adult population. International Journal of Research in Medical Sciences, 8(12), 4185. https://doi.org/10.18203/2320-6012.ijrms20205286
https://doi.org/10.18203/2320-6012.ijrms20205286
R, R., & Nambiar, S. (2017). Correlation of anthropometric indices with lipid profile in adult females. National Journal of Physiology, Pharmacy and Pharmacology, 1. https://doi.org/10.5455/njppp.2018.8.1042004112017
https://doi.org/10.5455/njppp.2018.8.1042004112017
Ramazan Karadogan, S., Canbolat, E., & Pınar Cakıroglu, F. (2022). The effect of obesity on metabolic parameters: a cross sectional study in adult women. African Health Sciences, 22(4), 241-251. https://doi.org/10.4314/ahs.v22i4.29
https://doi.org/10.4314/ahs.v22i4.29
Rizki, M. U., Probosari, E., & Nissa, C. (2017). HUBUNGAN LINGKAR PINGGANG, RASIO LINGKAR PINGGANG TERHADAP TINGGI BADAN DAN INDEKS MASSA TUBUH DENGAN KADAR ASAM URAT PEREMPUAN USIA 45-55 TAHUN. Journal of Nutrition College, 6(4), 357. https://doi.org/10.14710/jnc.v6i4.18788
https://doi.org/10.14710/jnc.v6i4.18788
Rosales-Ricardo, Y., Caiza-Ruiz, V., & Álvarez-Carrión, S. (2024). Anthropometric indicators and their relationship with body fat in obese women. Bionatura Journal, 9(1), 1-11. https://doi.org/10.21931/RB/2024.09.01.3
https://doi.org/10.21931/RB/2024.09.01.3
Rustika, R., Driyah, S., Oemiati, R., & Hartati, N. S. (2019). Prediktor Sindrom Metabolik: Studi Kohor Prospektif Selama Enam Tahun di Bogor, Indonesia. Media Penelitian Dan Pengembangan Kesehatan, 29(3), 215-224. https://doi.org/10.22435/mpk.v29i3.654
https://doi.org/10.22435/mpk.v29i3.654
Shi, J., Chen, Z., & Zhang, Y. (2024). Associations between body fat anthropometric indices and mortality among individuals with metabolic syndrome. Lipids in Health and Disease, 23(1), 306. https://doi.org/10.1186/s12944-024-02272-0
https://doi.org/10.1186/s12944-024-02272-0
Sinha, N. K., & Haldar, J. P. (2015). Correlation between Haemoglobin Level and Anthropometric Variables: A Study on Women of Reproductive Age Group, West Bengal. The Anthropologist, 19(1), 185-192. https://doi.org/10.1080/09720073.2015.11891653
https://doi.org/10.1080/09720073.2015.11891653
Stevens, V. L., Carter, B. D., McCullough, M. L., Campbell, P. T., & Wang, Y. (2020). Metabolomic Profiles Associated with BMI, Waist Circumference, and Diabetes and Inflammation Biomarkers in Women. Obesity, 28(1), 187-196. https://doi.org/10.1002/oby.22670
https://doi.org/10.1002/oby.22670
Tabary, M., Cheraghian, B., Mohammadi, Z., Rahimi, Z., Naderian, M. R., Danehchin, L., Paridar, Y., Abolnejadian, F., Noori, M., Mard, S. A., Masoudi, S., Araghi, F., Shayesteh, A. A., & Poustchi, H. (2021). Association of anthropometric indices with cardiovascular disease risk factors among adults: a study in Iran. European Journal of Cardiovascular Nursing, 20(4), 358-366. https://doi.org/10.1093/eurjcn/zvaa007
https://doi.org/10.1093/eurjcn/zvaa007
Tapio, J., Vähänikkilä, H., Kesäniemi, Y. A., Ukkola, O., & Koivunen, P. (2021). Higher hemoglobin levels are an independent risk factor for adverse metabolism and higher mortality in a 20-year follow-up. Scientific Reports, 11(1), 19936. https://doi.org/10.1038/s41598-021-99217-9
https://doi.org/10.1038/s41598-021-99217-9
Timoteo, V. J., Chiang, K.-M., & Pan, W.-H. (2022). Positive or U-Shaped Association of Elevated Hemoglobin Concentration Levels with Metabolic Syndrome and Metabolic Components: Findings from Taiwan Biobank and UK Biobank. Nutrients, 14(19), 4007. https://doi.org/10.3390/nu14194007
https://doi.org/10.3390/nu14194007
Toselli, S., Grigoletto, A., Zaccagni, L., Rinaldo, N., Badicu, G., Grosz, W. R., & Campa, F. (2021). Body image perception and body composition in early adolescents: a longitudinal study of an Italian cohort. BMC Public Health, 21(1), 1381. https://doi.org/10.1186/s12889-021-11458-5
https://doi.org/10.1186/s12889-021-11458-5
Verma, S., Verma, N., & Tiwari, S. (2021). Association and Sensitivity of Serum Uric Acid Levels with Certain Anthropometric Parameters in Overweight and Obese Subjects. International Journal of Health Sciences and Research, 11(3), 198-204. https://www.ijhsr.org/IJHSR_Vol.11_Issue.3_March2021/IJHSR031.pdf
Zhao, Y., Gong, J., Ji, Y., Zhao, X., He, L., Cai, S., & Yan, X. (2023). Cross-sectional study of characteristics of body composition of 24,845 children and adolescents aged 3-17 years in Suzhou. BMC Pediatrics, 23(1), 358. https://doi.org/10.1186/s12887-023-04134-7
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Jurnal Kesehatan Amanah

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
 
						 
							





