Modulasi Usia terhadap Deposisi Lemak Subkutan dan Kaitannya dengan Biomarker Darah pada Perempuan Dewasa

Authors

  • Fadil Hidayat Universitas Tarumanagara
  • Alexander Halim Santoso Universitas Tarumanagara
  • Bryan Anna Wijaya Universitas Tarumanagara

DOI:

https://doi.org/10.57214/jka.v9i1.929

Keywords:

Adult women, Age, Fasting glucose, HDL, Hemoglobin, Subcutaneous fat, Uric acid

Abstract

Introduction: Subcutaneous fat distribution in adult women changes significantly with age, particularly during menopausal transition. This modulation is closely linked to hormonal alterations and may be reflected through blood biomarkers. Methods: A cross-sectional study was conducted to analyze the relationship between age and blood biomarkers (hemoglobin, fasting glucose, HDL, and uric acid) with subcutaneous fat thickness at three body sites (biceps, triceps, and suprailiac) in adult women. Pearson correlation tests were used to assess associations between variables. Results: A significant positive correlation was found between age and biceps fat thickness (r = 0.112; p = 0.044). Hemoglobin showed a consistent positive correlation with fat thickness across all sites. Fasting glucose correlated positively with triceps fat (r = 0.109; p = 0.050), and uric acid was positively associated with triceps and suprailiac fat. HDL exhibited a significant negative correlation with suprailiac fat (r = -0.180; p = 0.001). Conclusion: Blood biomarkers hold potential as non-invasive indicators for tracking age-related subcutaneous fat redistribution. This approach could enhance early detection of metabolic risk in adult women and support preventive and integrative clinical strategies.

References

Abildgaard, J., Ploug, T., Al-Saoudi, E., Wagner, T., Thomsen, C., Ewertsen, C., Bzorek, M., Pedersen, B. K., Pedersen, A. T., & Lindegaard, B. (2021). Changes in abdominal subcutaneous adipose tissue phenotype following menopause is associated with increased visceral fat mass. Scientific Reports, 11(1), 14750. https://doi.org/10.1038/s41598-021-94189-2

https://doi.org/10.1038/s41598-021-94189-2

Apaflo, J., Sanders, K., Labadah, J., Narvaez, G., Rocha, V., Villalobos, U., & John Tomy, I. (2024). Blood Glucose Fluctuation Is Indicative of Adiposity. Physiology, 39(S1). https://doi.org/10.1152/physiol.2024.39.S1.1453

https://doi.org/10.1152/physiol.2024.39.S1.1453

Bai, B., Chen, M., Wang, S., Qu, J., Huang, X., & Li, L. (2024). Effects of Glucose Concentration on Differentiation, Adipogenic Marker Genes Expression and Glucose Transporter Distribution in Bovine Subcutaneous Preadipocytes. Indian Journal of Animal Research, Of. https://doi.org/10.18805/IJAR.BF-1909

https://doi.org/10.18805/IJAR.BF-1909

Briand, M., Raffin, J., Gonzalez-Bautista, E., Ritz, P., Abellan Van Kan, G., Pillard, F., Faruch-Bilfeld, M., Guyonnet, S., Dray, C., Vellas, B., de Souto Barreto, P., & Rolland, Y. (2024). Body composition and aging: cross-sectional results from the INSPIRE study in people 20 to 93 years old. GeroScience, 47(1), 863-875. https://doi.org/10.1007/s11357-024-01245-6

https://doi.org/10.1007/s11357-024-01245-6

Cariolou, M., Becerra‐Tomás, N., Vieira, R., Balducci, K., Aune, D., Müller, D. C., Chan, D. S. M., & Tsilidis, K. K. (2023). Association Between Adiposity After Diagnosis of Prostate Cancer and Mortality: Systematic Review and Meta-Analysis. BMJ Medicine. https://doi.org/10.1136/bmjmed-2022-000339

https://doi.org/10.1136/bmjmed-2022-000339

Chomiuk, T., Niezgoda, N., Mamcarz, A., & Śliż, D. (2024). Physical activity in metabolic syndrome. Frontiers in Physiology, 15. https://doi.org/10.3389/fphys.2024.1365761

https://doi.org/10.3389/fphys.2024.1365761

Damayanti, A. Y., Fatimah, F., Luthfiya, L., & Kusumadiastuti, A. D. (2023). Subcutaneous Fat Thickness with HDL and LDL Levels in Overweight Female Student. Amerta Nutrition, 7(2SP), 13-17. https://doi.org/10.20473/amnt.v7i2SP.2023.13-17

https://doi.org/10.20473/amnt.v7i2SP.2023.13-17

Demir, A. D., Karli, P., & Ayan, D. (2020). The Relationship Between Abdominal Subcutan Fat Tissue Thickness and HbA1c in Pregnant Women. Gynecology Obstetrics & Reproductive Medicine, 26(1), 11-16. https://doi.org/10.21613/GORM.2019.970

https://doi.org/10.21613/GORM.2019.970

El Khoudary, S. R., Venugopal, V., Manson, J. E., Brooks, M. M., Santoro, N., Black, D. M., Harman, M., Naftolin, F., Hodis, H. N., Brinton, E. A., Miller, V. M., Taylor, H. S., & Budoff, M. J. (2020). Heart fat and carotid artery atherosclerosis progression in recently menopausal women: impact of menopausal hormone therapy: The KEEPS trial. Menopause, 27(3), 255-262. https://doi.org/10.1097/GME.0000000000001472

https://doi.org/10.1097/GME.0000000000001472

Greco, P., Vimercati, A., Hyett, J., Rossi, A. C., Scioscia, M., Giorgino, F., Loverro, G., & Selvaggi, L. (2003). The ultrasound assessment of adipose tissue deposition in fetuses of 'well controlled' insulin‐dependent diabetic pregnancies. Diabetic Medicine, 20(10), 858-862. https://doi.org/10.1046/j.1464-5491.2003.01041.x

https://doi.org/10.1046/j.1464-5491.2003.01041.x

Guo, L., Wei, C., Yi, L., Yang, W., Geng, Z., & Chen, X. (2021). Transcriptional Insights into Key Genes and Pathways Underlying Muscovy Duck Subcutaneous Fat Deposition at Different Developmental Stages. Animals, 11(7), 2099. https://doi.org/10.3390/ani11072099

https://doi.org/10.3390/ani11072099

Hassler, E. M., Deutschmann, H., Almer, G., Renner, W., Mangge, H., Herrmann, M., Leber, S., Michenthaler, M., Staszewski, A., Gunzer, F., Partl, R., & Reishofer, G. (2021). Distribution of subcutaneous and intermuscular fatty tissue of the mid-thigh measured by MRI-A putative indicator of serum adiponectin level and individual factors of cardio-metabolic risk. PLOS ONE, 16(11), e0259952. https://doi.org/10.1371/journal.pone.0259952

https://doi.org/10.1371/journal.pone.0259952

Hetemäki, N., Robciuc, A., Vihma, V., Haanpää, M., Hämäläinen, E., Tikkanen, M. J., Mikkola, T. S., & Savolainen-Peltonen, H. (2025). Adipose Tissue Sex Steroids in Postmenopausal Women With and Without Menopausal Hormone Therapy. The Journal of Clinical Endocrinology & Metabolism, 110(2), 511-522. https://doi.org/10.1210/clinem/dgae458

https://doi.org/10.1210/clinem/dgae458

Heymsfield, S. B. (2024). Advances in Body Composition: A 100-Year Journey. International Journal of Obesity. https://doi.org/10.1038/s41366-024-01511-9

https://doi.org/10.1038/s41366-024-01511-9

Jacob, A. N., Adams‐Huet, B., & Raskin, P. (2006). The visceral and subcutaneous fat changes in type 1 diabetes: a pilot study. Diabetes, Obesity and Metabolism, 8(5), 524-530. https://doi.org/10.1111/j.1463-1326.2005.00538.x

https://doi.org/10.1111/j.1463-1326.2005.00538.x

Kohir, D. S., Murhan, A., & Sulastri, S. (2024). Skrining Faktor Risiko Obesitas Usia Produktif. Jurnal Wacana Kesehatan, 9(2), 97. https://doi.org/10.52822/jwk.v9i2.673

https://doi.org/10.52822/jwk.v9i2.673

Kuroiwa, M., Fuse, S., Amagasa, S., Kime, R., Endo, T., Kurosawa, Y., & Hamaoka, T. (2019). Relationship of Total Hemoglobin in Subcutaneous Adipose Tissue with Whole-Body and Visceral Adiposity in Humans. Applied Sciences, 9(12), 2442. https://doi.org/10.3390/app9122442

https://doi.org/10.3390/app9122442

Kuryłowicz, A. (2023). Estrogens in Adipose Tissue Physiology and Obesity-Related Dysfunction. Biomedicines, 11(3), 690. https://doi.org/10.3390/biomedicines11030690

https://doi.org/10.3390/biomedicines11030690

Liu, Y., Gao, L., Wu, M., Yang, B., Ren, D., Zhang, Z., Zhang, W., & Wang, Y. (2025). Effect of adipose tissue deposition on insulin resistance in middle‐aged and elderly women: Based on QCT and MRI mDIXON ‐Quant. Journal of Diabetes Investigation, 16(2), 292-297. https://doi.org/10.1111/jdi.14352

https://doi.org/10.1111/jdi.14352

Liu, Y., Mao, S., Xie, W., Agnieszka, H.-L. K., Helena, S. M., Magdalena, D.-Z., Qian, G., & Ossowski, Z. (2024). Relationship between physical activity and abdominal obesity and metabolic markers in postmenopausal women. Scientific Reports, 14(1), 26496. https://doi.org/10.1038/s41598-024-77900-x

https://doi.org/10.1038/s41598-024-77900-x

Moreno, S., Ayers, C., Nguyen, N., Rohatgi, A., & Lau, E. S. (2024). Lipid changes across menopause status point to increased cardiovascular risk. European Heart Journal, 45(Supplement_1). https://doi.org/10.1093/eurheartj/ehae666.2839

https://doi.org/10.1093/eurheartj/ehae666.2839

Moreno-Navarrete, J. M., Rodríguez, A., Ortega, F., Becerril, S., Sabater-Masdeu, M., Latorre, J., Ricart, W., Frühbeck, G., & Fernández-Real, J. M. (2017). Increased adipose tissue heme levels and exportation are associated with altered systemic glucose metabolism. Scientific Reports, 7(1), 5305. https://doi.org/10.1038/s41598-017-05597-2

https://doi.org/10.1038/s41598-017-05597-2

Nascimento, L. M., Lavôr, L. C. de C., Rodrigues, B. G. M., Campos, F., Viola, P. C. de A. F., Lucarini, M., Durazzo, A., Arcanjo, D. D. R., Martins, M. do C. de C. e, & Frota, K. de M. G. (2023). Association Between Consumption of Ultra-Processed Food and Body Composition of Adults in a Capital City of a Brazilian Region. Nutrients. https://doi.org/10.3390/nu15143157

https://doi.org/10.3390/nu15143157

Pereira-Junior, S. A. G., Costa, R. V, Rodrigues, J. L., Torrecilhas, J. A., Chiaratti, M. R., Lanna, D. P. D., das Chagas, J. C., Nociti, R. P., Meirelles, F. V, Ferraz, J. B. S., Fernandes, M. H. M. R., Almeida, M. T. C., & Ezequiel, J. M. B. (2024). Soybean molasses increases subcutaneous fat deposition while reducing lipid oxidation in the meat of castrated lambs. Journal of Animal Science, 102. https://doi.org/10.1093/jas/skae130

https://doi.org/10.1093/jas/skae130

Qin, Y., Qiao, Y., Wang, D., Li, M., Yang, Z., Li, L., Yan, G., & Tang, C. (2023). Visceral adiposity index is positively associated with fasting plasma glucose: a cross-sectional study from National Health and Nutrition Examination Survey 2017-2020. BMC Public Health, 23(1), 313. https://doi.org/10.1186/s12889-023-15231-8

https://doi.org/10.1186/s12889-023-15231-8

Sun, H., Hong, S. Y., Ruan, Z., Liu, C., Wang, Y., & Fang, C. (2023). Serum Uric Acid to High density Lipoprotein Cholesterol Ratio Is Associated With Visceral Fat in Patients With Type 2 Diabetes. Diabetes Metabolic Syndrome and Obesity Targets and Therapy. https://doi.org/10.2147/dmso.s403895

https://doi.org/10.2147/DMSO.S403895

Thondam, S. K., Daousi, C., Wilding, J. P. H., Holst, J. J., Ameen, G. I., Yang, C., Whitmore, C., Mora, S., & Cuthbertson, D. J. (2017). Glucose-dependent insulinotropic polypeptide promotes lipid deposition in subcutaneous adipocytes in obese type 2 diabetes patients: a maladaptive response. American Journal of Physiology-Endocrinology and Metabolism, 312(3), E224-E233. https://doi.org/10.1152/ajpendo.00347.2016

https://doi.org/10.1152/ajpendo.00347.2016

Tsukagoshi‐Yamaguchi, A. (2023). Metabolomic Analysis of Serum Samples From a Clinical Study on Ipragliflozin and Metformin Treatment in Japanese Patients With Type 2 Diabetes: Exploring Human Metabolites Associated With Visceral Fat Reduction. Pharmacotherapy the Journal of Human Pharmacology and Drug Therapy. https://doi.org/10.1002/phar.2884

https://doi.org/10.1002/phar.2884

Wang, Y. (2024). Associations of Serum Uric Acid to High-Density Lipoprotein Cholesterol Ratio With Trunk Fat Mass and Visceral Fat Accumulation. Diabetes Metabolic Syndrome and Obesity Targets and Therapy. https://doi.org/10.2147/dmso.s444142

https://doi.org/10.2147/DMSO.S444142

Whytock, K. L., Divoux, A., Sun, Y., Pino, M. F., Yu, G., Jin, C. A., Robino, J. J., Plekhanov, A., Varlamov, O., Smith, S. R., Walsh, M. J., & Sparks, L. M. (2024). Aging human abdominal subcutaneous white adipose tissue at single cell resolution. Aging Cell, 23(11). https://doi.org/10.1111/acel.14287

https://doi.org/10.1111/acel.14287

Xiong, L., Pei, J., Bao, P., Wang, X., Guo, S., Cao, M., Kang, Y., Yan, P., & Guo, X. (2023). The Effect of the Feeding System on Fat Deposition in Yak Subcutaneous Fat. International Journal of Molecular Sciences, 24(8), 7381. https://doi.org/10.3390/ijms24087381

https://doi.org/10.3390/ijms24087381

You, W., Liu, S., Li, J., Tu, Y., & Shan, T. (2023). GADD45A regulates subcutaneous fat deposition and lipid metabolism by interacting with Stat1. BMC Biology, 21(1), 212. https://doi.org/10.1186/s12915-023-01713-z

https://doi.org/10.1186/s12915-023-01713-z

Downloads

Published

2025-05-31

How to Cite

Fadil Hidayat, Alexander Halim Santoso, & Bryan Anna Wijaya. (2025). Modulasi Usia terhadap Deposisi Lemak Subkutan dan Kaitannya dengan Biomarker Darah pada Perempuan Dewasa. Jurnal Kesehatan Amanah, 9(1), 410–423. https://doi.org/10.57214/jka.v9i1.929