Modulasi Usia terhadap Deposisi Lemak Subkutan dan Kaitannya dengan Biomarker Darah pada Perempuan Dewasa
DOI:
https://doi.org/10.57214/jka.v9i1.929Keywords:
Adult women, Age, Fasting glucose, HDL, Hemoglobin, Subcutaneous fat, Uric acidAbstract
Introduction: Subcutaneous fat distribution in adult women changes significantly with age, particularly during menopausal transition. This modulation is closely linked to hormonal alterations and may be reflected through blood biomarkers. Methods: A cross-sectional study was conducted to analyze the relationship between age and blood biomarkers (hemoglobin, fasting glucose, HDL, and uric acid) with subcutaneous fat thickness at three body sites (biceps, triceps, and suprailiac) in adult women. Pearson correlation tests were used to assess associations between variables. Results: A significant positive correlation was found between age and biceps fat thickness (r = 0.112; p = 0.044). Hemoglobin showed a consistent positive correlation with fat thickness across all sites. Fasting glucose correlated positively with triceps fat (r = 0.109; p = 0.050), and uric acid was positively associated with triceps and suprailiac fat. HDL exhibited a significant negative correlation with suprailiac fat (r = -0.180; p = 0.001). Conclusion: Blood biomarkers hold potential as non-invasive indicators for tracking age-related subcutaneous fat redistribution. This approach could enhance early detection of metabolic risk in adult women and support preventive and integrative clinical strategies.
References
Abildgaard, J., Ploug, T., Al-Saoudi, E., Wagner, T., Thomsen, C., Ewertsen, C., Bzorek, M., Pedersen, B. K., Pedersen, A. T., & Lindegaard, B. (2021). Changes in abdominal subcutaneous adipose tissue phenotype following menopause is associated with increased visceral fat mass. Scientific Reports, 11(1), 14750. https://doi.org/10.1038/s41598-021-94189-2
https://doi.org/10.1038/s41598-021-94189-2
Apaflo, J., Sanders, K., Labadah, J., Narvaez, G., Rocha, V., Villalobos, U., & John Tomy, I. (2024). Blood Glucose Fluctuation Is Indicative of Adiposity. Physiology, 39(S1). https://doi.org/10.1152/physiol.2024.39.S1.1453
https://doi.org/10.1152/physiol.2024.39.S1.1453
Bai, B., Chen, M., Wang, S., Qu, J., Huang, X., & Li, L. (2024). Effects of Glucose Concentration on Differentiation, Adipogenic Marker Genes Expression and Glucose Transporter Distribution in Bovine Subcutaneous Preadipocytes. Indian Journal of Animal Research, Of. https://doi.org/10.18805/IJAR.BF-1909
https://doi.org/10.18805/IJAR.BF-1909
Briand, M., Raffin, J., Gonzalez-Bautista, E., Ritz, P., Abellan Van Kan, G., Pillard, F., Faruch-Bilfeld, M., Guyonnet, S., Dray, C., Vellas, B., de Souto Barreto, P., & Rolland, Y. (2024). Body composition and aging: cross-sectional results from the INSPIRE study in people 20 to 93 years old. GeroScience, 47(1), 863-875. https://doi.org/10.1007/s11357-024-01245-6
https://doi.org/10.1007/s11357-024-01245-6
Cariolou, M., Becerra‐Tomás, N., Vieira, R., Balducci, K., Aune, D., Müller, D. C., Chan, D. S. M., & Tsilidis, K. K. (2023). Association Between Adiposity After Diagnosis of Prostate Cancer and Mortality: Systematic Review and Meta-Analysis. BMJ Medicine. https://doi.org/10.1136/bmjmed-2022-000339
https://doi.org/10.1136/bmjmed-2022-000339
Chomiuk, T., Niezgoda, N., Mamcarz, A., & Śliż, D. (2024). Physical activity in metabolic syndrome. Frontiers in Physiology, 15. https://doi.org/10.3389/fphys.2024.1365761
https://doi.org/10.3389/fphys.2024.1365761
Damayanti, A. Y., Fatimah, F., Luthfiya, L., & Kusumadiastuti, A. D. (2023). Subcutaneous Fat Thickness with HDL and LDL Levels in Overweight Female Student. Amerta Nutrition, 7(2SP), 13-17. https://doi.org/10.20473/amnt.v7i2SP.2023.13-17
https://doi.org/10.20473/amnt.v7i2SP.2023.13-17
Demir, A. D., Karli, P., & Ayan, D. (2020). The Relationship Between Abdominal Subcutan Fat Tissue Thickness and HbA1c in Pregnant Women. Gynecology Obstetrics & Reproductive Medicine, 26(1), 11-16. https://doi.org/10.21613/GORM.2019.970
https://doi.org/10.21613/GORM.2019.970
El Khoudary, S. R., Venugopal, V., Manson, J. E., Brooks, M. M., Santoro, N., Black, D. M., Harman, M., Naftolin, F., Hodis, H. N., Brinton, E. A., Miller, V. M., Taylor, H. S., & Budoff, M. J. (2020). Heart fat and carotid artery atherosclerosis progression in recently menopausal women: impact of menopausal hormone therapy: The KEEPS trial. Menopause, 27(3), 255-262. https://doi.org/10.1097/GME.0000000000001472
https://doi.org/10.1097/GME.0000000000001472
Greco, P., Vimercati, A., Hyett, J., Rossi, A. C., Scioscia, M., Giorgino, F., Loverro, G., & Selvaggi, L. (2003). The ultrasound assessment of adipose tissue deposition in fetuses of 'well controlled' insulin‐dependent diabetic pregnancies. Diabetic Medicine, 20(10), 858-862. https://doi.org/10.1046/j.1464-5491.2003.01041.x
https://doi.org/10.1046/j.1464-5491.2003.01041.x
Guo, L., Wei, C., Yi, L., Yang, W., Geng, Z., & Chen, X. (2021). Transcriptional Insights into Key Genes and Pathways Underlying Muscovy Duck Subcutaneous Fat Deposition at Different Developmental Stages. Animals, 11(7), 2099. https://doi.org/10.3390/ani11072099
https://doi.org/10.3390/ani11072099
Hassler, E. M., Deutschmann, H., Almer, G., Renner, W., Mangge, H., Herrmann, M., Leber, S., Michenthaler, M., Staszewski, A., Gunzer, F., Partl, R., & Reishofer, G. (2021). Distribution of subcutaneous and intermuscular fatty tissue of the mid-thigh measured by MRI-A putative indicator of serum adiponectin level and individual factors of cardio-metabolic risk. PLOS ONE, 16(11), e0259952. https://doi.org/10.1371/journal.pone.0259952
https://doi.org/10.1371/journal.pone.0259952
Hetemäki, N., Robciuc, A., Vihma, V., Haanpää, M., Hämäläinen, E., Tikkanen, M. J., Mikkola, T. S., & Savolainen-Peltonen, H. (2025). Adipose Tissue Sex Steroids in Postmenopausal Women With and Without Menopausal Hormone Therapy. The Journal of Clinical Endocrinology & Metabolism, 110(2), 511-522. https://doi.org/10.1210/clinem/dgae458
https://doi.org/10.1210/clinem/dgae458
Heymsfield, S. B. (2024). Advances in Body Composition: A 100-Year Journey. International Journal of Obesity. https://doi.org/10.1038/s41366-024-01511-9
https://doi.org/10.1038/s41366-024-01511-9
Jacob, A. N., Adams‐Huet, B., & Raskin, P. (2006). The visceral and subcutaneous fat changes in type 1 diabetes: a pilot study. Diabetes, Obesity and Metabolism, 8(5), 524-530. https://doi.org/10.1111/j.1463-1326.2005.00538.x
https://doi.org/10.1111/j.1463-1326.2005.00538.x
Kohir, D. S., Murhan, A., & Sulastri, S. (2024). Skrining Faktor Risiko Obesitas Usia Produktif. Jurnal Wacana Kesehatan, 9(2), 97. https://doi.org/10.52822/jwk.v9i2.673
https://doi.org/10.52822/jwk.v9i2.673
Kuroiwa, M., Fuse, S., Amagasa, S., Kime, R., Endo, T., Kurosawa, Y., & Hamaoka, T. (2019). Relationship of Total Hemoglobin in Subcutaneous Adipose Tissue with Whole-Body and Visceral Adiposity in Humans. Applied Sciences, 9(12), 2442. https://doi.org/10.3390/app9122442
https://doi.org/10.3390/app9122442
Kuryłowicz, A. (2023). Estrogens in Adipose Tissue Physiology and Obesity-Related Dysfunction. Biomedicines, 11(3), 690. https://doi.org/10.3390/biomedicines11030690
https://doi.org/10.3390/biomedicines11030690
Liu, Y., Gao, L., Wu, M., Yang, B., Ren, D., Zhang, Z., Zhang, W., & Wang, Y. (2025). Effect of adipose tissue deposition on insulin resistance in middle‐aged and elderly women: Based on QCT and MRI mDIXON ‐Quant. Journal of Diabetes Investigation, 16(2), 292-297. https://doi.org/10.1111/jdi.14352
https://doi.org/10.1111/jdi.14352
Liu, Y., Mao, S., Xie, W., Agnieszka, H.-L. K., Helena, S. M., Magdalena, D.-Z., Qian, G., & Ossowski, Z. (2024). Relationship between physical activity and abdominal obesity and metabolic markers in postmenopausal women. Scientific Reports, 14(1), 26496. https://doi.org/10.1038/s41598-024-77900-x
https://doi.org/10.1038/s41598-024-77900-x
Moreno, S., Ayers, C., Nguyen, N., Rohatgi, A., & Lau, E. S. (2024). Lipid changes across menopause status point to increased cardiovascular risk. European Heart Journal, 45(Supplement_1). https://doi.org/10.1093/eurheartj/ehae666.2839
https://doi.org/10.1093/eurheartj/ehae666.2839
Moreno-Navarrete, J. M., Rodríguez, A., Ortega, F., Becerril, S., Sabater-Masdeu, M., Latorre, J., Ricart, W., Frühbeck, G., & Fernández-Real, J. M. (2017). Increased adipose tissue heme levels and exportation are associated with altered systemic glucose metabolism. Scientific Reports, 7(1), 5305. https://doi.org/10.1038/s41598-017-05597-2
https://doi.org/10.1038/s41598-017-05597-2
Nascimento, L. M., Lavôr, L. C. de C., Rodrigues, B. G. M., Campos, F., Viola, P. C. de A. F., Lucarini, M., Durazzo, A., Arcanjo, D. D. R., Martins, M. do C. de C. e, & Frota, K. de M. G. (2023). Association Between Consumption of Ultra-Processed Food and Body Composition of Adults in a Capital City of a Brazilian Region. Nutrients. https://doi.org/10.3390/nu15143157
https://doi.org/10.3390/nu15143157
Pereira-Junior, S. A. G., Costa, R. V, Rodrigues, J. L., Torrecilhas, J. A., Chiaratti, M. R., Lanna, D. P. D., das Chagas, J. C., Nociti, R. P., Meirelles, F. V, Ferraz, J. B. S., Fernandes, M. H. M. R., Almeida, M. T. C., & Ezequiel, J. M. B. (2024). Soybean molasses increases subcutaneous fat deposition while reducing lipid oxidation in the meat of castrated lambs. Journal of Animal Science, 102. https://doi.org/10.1093/jas/skae130
https://doi.org/10.1093/jas/skae130
Qin, Y., Qiao, Y., Wang, D., Li, M., Yang, Z., Li, L., Yan, G., & Tang, C. (2023). Visceral adiposity index is positively associated with fasting plasma glucose: a cross-sectional study from National Health and Nutrition Examination Survey 2017-2020. BMC Public Health, 23(1), 313. https://doi.org/10.1186/s12889-023-15231-8
https://doi.org/10.1186/s12889-023-15231-8
Sun, H., Hong, S. Y., Ruan, Z., Liu, C., Wang, Y., & Fang, C. (2023). Serum Uric Acid to High density Lipoprotein Cholesterol Ratio Is Associated With Visceral Fat in Patients With Type 2 Diabetes. Diabetes Metabolic Syndrome and Obesity Targets and Therapy. https://doi.org/10.2147/dmso.s403895
https://doi.org/10.2147/DMSO.S403895
Thondam, S. K., Daousi, C., Wilding, J. P. H., Holst, J. J., Ameen, G. I., Yang, C., Whitmore, C., Mora, S., & Cuthbertson, D. J. (2017). Glucose-dependent insulinotropic polypeptide promotes lipid deposition in subcutaneous adipocytes in obese type 2 diabetes patients: a maladaptive response. American Journal of Physiology-Endocrinology and Metabolism, 312(3), E224-E233. https://doi.org/10.1152/ajpendo.00347.2016
https://doi.org/10.1152/ajpendo.00347.2016
Tsukagoshi‐Yamaguchi, A. (2023). Metabolomic Analysis of Serum Samples From a Clinical Study on Ipragliflozin and Metformin Treatment in Japanese Patients With Type 2 Diabetes: Exploring Human Metabolites Associated With Visceral Fat Reduction. Pharmacotherapy the Journal of Human Pharmacology and Drug Therapy. https://doi.org/10.1002/phar.2884
https://doi.org/10.1002/phar.2884
Wang, Y. (2024). Associations of Serum Uric Acid to High-Density Lipoprotein Cholesterol Ratio With Trunk Fat Mass and Visceral Fat Accumulation. Diabetes Metabolic Syndrome and Obesity Targets and Therapy. https://doi.org/10.2147/dmso.s444142
https://doi.org/10.2147/DMSO.S444142
Whytock, K. L., Divoux, A., Sun, Y., Pino, M. F., Yu, G., Jin, C. A., Robino, J. J., Plekhanov, A., Varlamov, O., Smith, S. R., Walsh, M. J., & Sparks, L. M. (2024). Aging human abdominal subcutaneous white adipose tissue at single cell resolution. Aging Cell, 23(11). https://doi.org/10.1111/acel.14287
https://doi.org/10.1111/acel.14287
Xiong, L., Pei, J., Bao, P., Wang, X., Guo, S., Cao, M., Kang, Y., Yan, P., & Guo, X. (2023). The Effect of the Feeding System on Fat Deposition in Yak Subcutaneous Fat. International Journal of Molecular Sciences, 24(8), 7381. https://doi.org/10.3390/ijms24087381
https://doi.org/10.3390/ijms24087381
You, W., Liu, S., Li, J., Tu, Y., & Shan, T. (2023). GADD45A regulates subcutaneous fat deposition and lipid metabolism by interacting with Stat1. BMC Biology, 21(1), 212. https://doi.org/10.1186/s12915-023-01713-z
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Jurnal Kesehatan Amanah

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.
 
						 
							





