The Correlation Between Body Composition and Mini Nutritional Assessment in The Elderly: A Cross-Sectional Study
DOI:
https://doi.org/10.57214/jka.v9i1.838Keywords:
Body Composition, Elderly, Mini Nutritional AssessmentAbstract
Aging leads to changes in body composition influenced by physical, psychological, and social factors. Understanding the relationship between fat distribution and nutritional status, particularly in older adults, is crucial for targeted interventions. This study examines the impact of body fat composition on nutritional assessment, particularly its influence on MNA scores in older adults. It aims to provide insights into how fat distribution and related metabolic changes affect nutritional status and inform targeted interventions for aging populations. The sample consisted of 31 elderly woman subjects selected through purposive sampling in a cross-sectional design from St. Francis of Assisi Catholic Church. Their nutritional status was determined using the MNA score, and the body composition measures were total body fat and skeletal muscle measured by the Omron Karada Scan HBF 375. SPSS analyzed statistical differences between body composition and MNA scores. This study found significant correlations between the Mini Nutritional Assessment scores and body composition parameters, including BMI (r = 0.473, p = 0.007), total subcutaneous fat (r = 0.468, p = 0.008), and visceral fat (r = 0.457, p = 0.010). Arm skeletal muscle showed a negative correlation (r = -0.486, p = 0.006). These results emphasize that fat composition is a critical determinant of nutritional status in the elderly. The study found a significant correlation between fat composition as a key determinant of nutritional status in the elderly, with significant correlations observed between MNA scores and various body fat parameters.
Keywords: Body Composition, Elderly, Mini Nutritional Assessment
References
Alley, D. E., Ferrucci, L., Barbagallo, M., Studenski, S. A., & Harris, T. B. (2008). A Research Agenda: The Changing Relationship Between Body Weight and Health in Aging. The Journals of Gerontology Series A: Biological Sciences and Medical Sciences, 63(11), 1257–1259. https://doi.org/10.1093/gerona/63.11.1257
Al-Sofiani, M. E., Ganji, S. S., & Kalyani, R. R. (2019). Body composition changes in diabetes and aging. Journal of Diabetes and Its Complications, 33(6), 451–459. https://doi.org/10.1016/j.jdiacomp.2019.03.007
Amarya, S., Singh, K., & Sabharwal, M. (2015). Changes during aging and their association with malnutrition. Journal of Clinical Gerontology and Geriatrics, 6(3), 78–84. https://doi.org/10.1016/j.jcgg.2015.05.003
Arai, Y., Kamide, K., & Hirose, N. (2019). Adipokines and Aging: Findings From Centenarians and the Very Old. Frontiers in Endocrinology, 10. https://doi.org/10.3389/fendo.2019.00142
Batsis, J. A., & Villareal, D. T. (2018). Sarcopenic obesity in older adults: aetiology, epidemiology and treatment strategies. Nature Reviews Endocrinology, 14(9), 513–537. https://doi.org/10.1038/s41574-018-0062-9
Birch, J., & Gil, J. (2020). Senescence and the SASP: many therapeutic avenues. Genes & Development, 34(23–24), 1565–1576. https://doi.org/10.1101/gad.343129.120
Clemente-Suárez, V. J., Redondo-Flórez, L., Beltrán-Velasco, A. I., Martín-Rodríguez, A., Martínez-Guardado, I., Navarro-Jiménez, E., Laborde-Cárdenas, C. C., & Tornero-Aguilera, J. F. (2023). The Role of Adipokines in Health and Disease. Biomedicines, 11(5), 1290. https://doi.org/10.3390/biomedicines11051290
Collins, B. C., Laakkonen, E. K., & Lowe, D. A. (2019). Aging of the musculoskeletal system: How the loss of estrogen impacts muscle strength. Bone, 123, 137–144. https://doi.org/10.1016/j.bone.2019.03.033
Cruz-Jentoft, A. J., Baeyens, J. P., Bauer, J. M., Boirie, Y., Cederholm, T., Landi, F., Martin, F. C., Michel, J.-P., Rolland, Y., Schneider, S. M., Topinková, E., Vandewoude, M., & Zamboni, M. (2010). Sarcopenia: European consensus on definition and diagnosis. Age and Ageing, 39(4), 412–423. https://doi.org/10.1093/ageing/afq034
Dhillon, R. J. S., & Hasni, S. (2017). Pathogenesis and Management of Sarcopenia. Clinics in Geriatric Medicine, 33(1), 17–26. https://doi.org/10.1016/j.cger.2016.08.002
Endo, Y., Nourmahnad, A., & Sinha, I. (2020). Optimizing Skeletal Muscle Anabolic Response to Resistance Training in Aging. Frontiers in Physiology, 11. https://doi.org/10.3389/fphys.2020.00874
Marcus, R. L., Addison, O., Kidde, J. P., Dibble, L. E., & Lastayo, P. C. (2010). Skeletal muscle fat infiltration: Impact of age, inactivity, and exercise. The Journal of Nutrition, Health and Aging, 14(5), 362–366. https://doi.org/10.1007/s12603-010-0081-2
Moon, S., Oh, E., Chung, D., Choi, R., & Hong, G.-R. S. (2023). Malnutrition as a major related factor of frailty among older adults residing in long-term care facilities in Korea. PLOS ONE, 18(4), e0283596. https://doi.org/10.1371/journal.pone.0283596
Nirengi, S., & Stanford, K. (2023). Brown adipose tissue and aging: A potential role for exercise. Experimental Gerontology, 178, 112218. https://doi.org/10.1016/j.exger.2023.112218
Norman, K., Haß, U., & Pirlich, M. (2021). Malnutrition in Older Adults—Recent Advances and Remaining Challenges. Nutrients, 13(8), 2764. https://doi.org/10.3390/nu13082764
Ou, M.-Y., Zhang, H., Tan, P.-C., Zhou, S.-B., & Li, Q.-F. (2022). Adipose tissue aging: mechanisms and therapeutic implications. Cell Death & Disease, 13(4), 300. https://doi.org/10.1038/s41419-022-04752-6
Palmer, A. K., & Jensen, M. D. (2022). Metabolic changes in aging humans: current evidence and therapeutic strategies. Journal of Clinical Investigation, 132(16). https://doi.org/10.1172/JCI158451
Ponti, F., Santoro, A., Mercatelli, D., Gasperini, C., Conte, M., Martucci, M., Sangiorgi, L., Franceschi, C., & Bazzocchi, A. (2020). Aging and Imaging Assessment of Body Composition: From Fat to Facts. Frontiers in Endocrinology, 10. https://doi.org/10.3389/fendo.2019.00861
Priego, T., Martín, A. I., González-Hedström, D., Granado, M., & López-Calderón, A. (2021). Role of hormones in sarcopenia (pp. 535–570). https://doi.org/10.1016/bs.vh.2020.12.021
Santanasto, A. J., Goodpaster, B. H., Kritchevsky, S. B., Miljkovic, I., Satterfield, S., Schwartz, A. V., Cummings, S. R., Boudreau, R. M., Harris, T. B., & Newman, A. B. (2016). Body Composition Remodeling and Mortality: The Health Aging and Body Composition Study. The Journals of Gerontology Series A: Biological Sciences and Medical Sciences, glw163. https://doi.org/10.1093/gerona/glw163
Santoso, A. H., Setiawan, F. V., Wijaya, B. A., & Destra, E. (2024). Pengukuran Komposisi Tubuh dalam Upaya Deteksi Obesitas pada Laki-laki dan Perempuan Usia Produktif di SMA Kalam Kudus II, Kelurahan Duri Kosambi, Jakarta. KREATIF: Jurnal Pengabdian Masyarakat Nusantara, 4(2), 78–86. https://doi.org/10.55606/kreatif.v4i2.3359
Sayer, A. A., Syddall, H., Martin, H., Patel, H., Baylis, D., & Cooper, C. (2008). The developmental origins of sarcopenia. The Journal of Nutrition, Health and Aging, 12(7), 427–432. https://doi.org/10.1007/BF02982703
Sowers, M., Zheng, H., Tomey, K., Karvonen-Gutierrez, C., Jannausch, M., Li, X., Yosef, M., & Symons, J. (2007). Changes in Body Composition in Women over Six Years at Midlife: Ovarian and Chronological Aging. The Journal of Clinical Endocrinology & Metabolism, 92(3), 895–901. https://doi.org/10.1210/jc.2006-1393
Starr, M. E., Hu, Y., Stromberg, A. J., Carmical, J. R., Wood, T. G., Evers, B. M., & Saito, H. (2013). Gene expression profile of mouse white adipose tissue during inflammatory stress: age‐dependent upregulation of major procoagulant factors. Aging Cell, 12(2), 194–206. https://doi.org/10.1111/acel.12040
Susy Olivia Lontoh, Yohanes Firmansyah, Ernawati Ernawati, Santoso, A. H., William Gilbert Satyanegara, Bryan Anna Wijaya, Fiona Valencia Setiawan, Nicholas Setia, & Daniel Goh. (2024). The Relationship Between Physical Activity and Nutritional Status Based on Body Mass Index for Age Percentiles in Elementary School Children in Ciherang Village. Archives of The Medicine and Case Reports, 5(3), 702–707. https://doi.org/10.37275/amcr.v5i3.553
Tchkonia, T., Morbeck, D. E., Von Zglinicki, T., Van Deursen, J., Lustgarten, J., Scrable, H., Khosla, S., Jensen, M. D., & Kirkland, J. L. (2010). Fat tissue, aging, and cellular senescence. Aging Cell, 9(5), 667–684. https://doi.org/10.1111/j.1474-9726.2010.00608.x
Wilson, M.-M. G., & Morley, J. E. (2003). Invited Review: Aging and energy balance. Journal of Applied Physiology, 95(4), 1728–1736. https://doi.org/10.1152/japplphysiol.00313.2003
Yen, C.-H., Lee, Y.-W., Chang, W.-J., & Lin, P.-T. (2024). The Mini Nutritional Assessment combined with body fat for detecting the risk of sarcopenia and sarcopenic obesity in metabolic syndrome. British Journal of Nutrition, 1–9. https://doi.org/10.1017/S0007114524000369
Zhang, S., Huang, Y., Li, J., Wang, X., Wang, X., Zhang, M., Zhang, Y., Du, M., Lin, J., & Li, C. (2023). Increased visceral fat area to skeletal muscle mass ratio is positively associated with the risk of cardiometabolic diseases in a Chinese natural population: A cross‐sectional study. Diabetes/Metabolism Research and Reviews, 39(2). https://doi.org/10.1002/dmrr.3597
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Jurnal Kesehatan Amanah

This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.