The Correlation Between Body Composition and Mini Nutritional Assessment in The Elderly: A Cross-Sectional Study

Authors

  • Frisca Frisca Tarumanagara University
  • Alexander Halim Santoso Tarumanagara University
  • Fiona Valencia Setiawan Tarumanagara University
  • Naufal Rayhan Tarumanagara University
  • Louise Audrey Sukianto Tarumanagara University

DOI:

https://doi.org/10.57214/jka.v9i1.838

Keywords:

Body Composition, Elderly, Mini Nutritional Assessment

Abstract

Aging leads to changes in body composition influenced by physical, psychological, and social factors. Understanding the relationship between fat distribution and nutritional status, particularly in older adults, is crucial for targeted interventions. This study examines the impact of body fat composition on nutritional assessment, particularly its influence on MNA scores in older adults. It aims to provide insights into how fat distribution and related metabolic changes affect nutritional status and inform targeted interventions for aging populations. The sample consisted of 31 elderly woman subjects selected through purposive sampling in a cross-sectional design from St. Francis of Assisi Catholic Church. Their nutritional status was determined using the MNA score, and the body composition measures were total body fat and skeletal muscle measured by the Omron Karada Scan HBF 375. SPSS analyzed statistical differences between body composition and MNA scores. This study found significant correlations between the Mini Nutritional Assessment scores and body composition parameters, including BMI (r = 0.473, p = 0.007), total subcutaneous fat (r = 0.468, p = 0.008), and visceral fat (r = 0.457, p = 0.010). Arm skeletal muscle showed a negative correlation (r = -0.486, p = 0.006). These results emphasize that fat composition is a critical determinant of nutritional status in the elderly.  The study found a significant correlation between fat composition as a key determinant of nutritional status in the elderly, with significant correlations observed between MNA scores and various body fat parameters.

Keywords: Body Composition, Elderly, Mini Nutritional Assessment

References

Alley, D. E., Ferrucci, L., Barbagallo, M., Studenski, S. A., & Harris, T. B. (2008). A Research Agenda: The Changing Relationship Between Body Weight and Health in Aging. The Journals of Gerontology Series A: Biological Sciences and Medical Sciences, 63(11), 1257–1259. https://doi.org/10.1093/gerona/63.11.1257

Al-Sofiani, M. E., Ganji, S. S., & Kalyani, R. R. (2019). Body composition changes in diabetes and aging. Journal of Diabetes and Its Complications, 33(6), 451–459. https://doi.org/10.1016/j.jdiacomp.2019.03.007

Amarya, S., Singh, K., & Sabharwal, M. (2015). Changes during aging and their association with malnutrition. Journal of Clinical Gerontology and Geriatrics, 6(3), 78–84. https://doi.org/10.1016/j.jcgg.2015.05.003

Arai, Y., Kamide, K., & Hirose, N. (2019). Adipokines and Aging: Findings From Centenarians and the Very Old. Frontiers in Endocrinology, 10. https://doi.org/10.3389/fendo.2019.00142

Batsis, J. A., & Villareal, D. T. (2018). Sarcopenic obesity in older adults: aetiology, epidemiology and treatment strategies. Nature Reviews Endocrinology, 14(9), 513–537. https://doi.org/10.1038/s41574-018-0062-9

Birch, J., & Gil, J. (2020). Senescence and the SASP: many therapeutic avenues. Genes & Development, 34(23–24), 1565–1576. https://doi.org/10.1101/gad.343129.120

Clemente-Suárez, V. J., Redondo-Flórez, L., Beltrán-Velasco, A. I., Martín-Rodríguez, A., Martínez-Guardado, I., Navarro-Jiménez, E., Laborde-Cárdenas, C. C., & Tornero-Aguilera, J. F. (2023). The Role of Adipokines in Health and Disease. Biomedicines, 11(5), 1290. https://doi.org/10.3390/biomedicines11051290

Collins, B. C., Laakkonen, E. K., & Lowe, D. A. (2019). Aging of the musculoskeletal system: How the loss of estrogen impacts muscle strength. Bone, 123, 137–144. https://doi.org/10.1016/j.bone.2019.03.033

Cruz-Jentoft, A. J., Baeyens, J. P., Bauer, J. M., Boirie, Y., Cederholm, T., Landi, F., Martin, F. C., Michel, J.-P., Rolland, Y., Schneider, S. M., Topinková, E., Vandewoude, M., & Zamboni, M. (2010). Sarcopenia: European consensus on definition and diagnosis. Age and Ageing, 39(4), 412–423. https://doi.org/10.1093/ageing/afq034

Dhillon, R. J. S., & Hasni, S. (2017). Pathogenesis and Management of Sarcopenia. Clinics in Geriatric Medicine, 33(1), 17–26. https://doi.org/10.1016/j.cger.2016.08.002

Endo, Y., Nourmahnad, A., & Sinha, I. (2020). Optimizing Skeletal Muscle Anabolic Response to Resistance Training in Aging. Frontiers in Physiology, 11. https://doi.org/10.3389/fphys.2020.00874

Marcus, R. L., Addison, O., Kidde, J. P., Dibble, L. E., & Lastayo, P. C. (2010). Skeletal muscle fat infiltration: Impact of age, inactivity, and exercise. The Journal of Nutrition, Health and Aging, 14(5), 362–366. https://doi.org/10.1007/s12603-010-0081-2

Moon, S., Oh, E., Chung, D., Choi, R., & Hong, G.-R. S. (2023). Malnutrition as a major related factor of frailty among older adults residing in long-term care facilities in Korea. PLOS ONE, 18(4), e0283596. https://doi.org/10.1371/journal.pone.0283596

Nirengi, S., & Stanford, K. (2023). Brown adipose tissue and aging: A potential role for exercise. Experimental Gerontology, 178, 112218. https://doi.org/10.1016/j.exger.2023.112218

Norman, K., Haß, U., & Pirlich, M. (2021). Malnutrition in Older Adults—Recent Advances and Remaining Challenges. Nutrients, 13(8), 2764. https://doi.org/10.3390/nu13082764

Ou, M.-Y., Zhang, H., Tan, P.-C., Zhou, S.-B., & Li, Q.-F. (2022). Adipose tissue aging: mechanisms and therapeutic implications. Cell Death & Disease, 13(4), 300. https://doi.org/10.1038/s41419-022-04752-6

Palmer, A. K., & Jensen, M. D. (2022). Metabolic changes in aging humans: current evidence and therapeutic strategies. Journal of Clinical Investigation, 132(16). https://doi.org/10.1172/JCI158451

Ponti, F., Santoro, A., Mercatelli, D., Gasperini, C., Conte, M., Martucci, M., Sangiorgi, L., Franceschi, C., & Bazzocchi, A. (2020). Aging and Imaging Assessment of Body Composition: From Fat to Facts. Frontiers in Endocrinology, 10. https://doi.org/10.3389/fendo.2019.00861

Priego, T., Martín, A. I., González-Hedström, D., Granado, M., & López-Calderón, A. (2021). Role of hormones in sarcopenia (pp. 535–570). https://doi.org/10.1016/bs.vh.2020.12.021

Santanasto, A. J., Goodpaster, B. H., Kritchevsky, S. B., Miljkovic, I., Satterfield, S., Schwartz, A. V., Cummings, S. R., Boudreau, R. M., Harris, T. B., & Newman, A. B. (2016). Body Composition Remodeling and Mortality: The Health Aging and Body Composition Study. The Journals of Gerontology Series A: Biological Sciences and Medical Sciences, glw163. https://doi.org/10.1093/gerona/glw163

Santoso, A. H., Setiawan, F. V., Wijaya, B. A., & Destra, E. (2024). Pengukuran Komposisi Tubuh dalam Upaya Deteksi Obesitas pada Laki-laki dan Perempuan Usia Produktif di SMA Kalam Kudus II, Kelurahan Duri Kosambi, Jakarta. KREATIF: Jurnal Pengabdian Masyarakat Nusantara, 4(2), 78–86. https://doi.org/10.55606/kreatif.v4i2.3359

Sayer, A. A., Syddall, H., Martin, H., Patel, H., Baylis, D., & Cooper, C. (2008). The developmental origins of sarcopenia. The Journal of Nutrition, Health and Aging, 12(7), 427–432. https://doi.org/10.1007/BF02982703

Sowers, M., Zheng, H., Tomey, K., Karvonen-Gutierrez, C., Jannausch, M., Li, X., Yosef, M., & Symons, J. (2007). Changes in Body Composition in Women over Six Years at Midlife: Ovarian and Chronological Aging. The Journal of Clinical Endocrinology & Metabolism, 92(3), 895–901. https://doi.org/10.1210/jc.2006-1393

Starr, M. E., Hu, Y., Stromberg, A. J., Carmical, J. R., Wood, T. G., Evers, B. M., & Saito, H. (2013). Gene expression profile of mouse white adipose tissue during inflammatory stress: age‐dependent upregulation of major procoagulant factors. Aging Cell, 12(2), 194–206. https://doi.org/10.1111/acel.12040

Susy Olivia Lontoh, Yohanes Firmansyah, Ernawati Ernawati, Santoso, A. H., William Gilbert Satyanegara, Bryan Anna Wijaya, Fiona Valencia Setiawan, Nicholas Setia, & Daniel Goh. (2024). The Relationship Between Physical Activity and Nutritional Status Based on Body Mass Index for Age Percentiles in Elementary School Children in Ciherang Village. Archives of The Medicine and Case Reports, 5(3), 702–707. https://doi.org/10.37275/amcr.v5i3.553

Tchkonia, T., Morbeck, D. E., Von Zglinicki, T., Van Deursen, J., Lustgarten, J., Scrable, H., Khosla, S., Jensen, M. D., & Kirkland, J. L. (2010). Fat tissue, aging, and cellular senescence. Aging Cell, 9(5), 667–684. https://doi.org/10.1111/j.1474-9726.2010.00608.x

Wilson, M.-M. G., & Morley, J. E. (2003). Invited Review: Aging and energy balance. Journal of Applied Physiology, 95(4), 1728–1736. https://doi.org/10.1152/japplphysiol.00313.2003

Yen, C.-H., Lee, Y.-W., Chang, W.-J., & Lin, P.-T. (2024). The Mini Nutritional Assessment combined with body fat for detecting the risk of sarcopenia and sarcopenic obesity in metabolic syndrome. British Journal of Nutrition, 1–9. https://doi.org/10.1017/S0007114524000369

Zhang, S., Huang, Y., Li, J., Wang, X., Wang, X., Zhang, M., Zhang, Y., Du, M., Lin, J., & Li, C. (2023). Increased visceral fat area to skeletal muscle mass ratio is positively associated with the risk of cardiometabolic diseases in a Chinese natural population: A cross‐sectional study. Diabetes/Metabolism Research and Reviews, 39(2). https://doi.org/10.1002/dmrr.3597

Downloads

Published

2025-05-19

How to Cite

Frisca, F., Santoso, A. H. ., Setiawan, F. V. ., Rayhan, N., & Sukianto, L. A. (2025). The Correlation Between Body Composition and Mini Nutritional Assessment in The Elderly: A Cross-Sectional Study. Jurnal Kesehatan Amanah, 9(1), 205–213. https://doi.org/10.57214/jka.v9i1.838

Most read articles by the same author(s)